College of Engineering

Department of Civil Engineering

CE 564 Advanced Solid Mechanics			
Credit and Contact hours	3/3 (Lectures), 0 (Tutorials), 0 (Laboratory)		
Required, or Elective	Required for a MSCE degree		
Course Description	Introduction to elasticity: stress; strain; equilibrium; compatibility; constitutive relations. Selected topics in advanced mechanics of materials: torsion of non-circular solid and thin-wall open and hollow sections; unsymmetrical bending; shear center; shear deformations in beams; curved beams; failure theories; beams on elastic foundations.		
Prerequisites or Co-requisites	None		
Course Learning Outcomes	Students completing this course successfully will be able to		
	Course Learning Outcomes	Related Program Outcomes	
	CLO1: Recognize the principles of solid mechanics and apply them to formulate solid mechanics problems	K1	
	CLO2 : Identify and apply failure criteria to multiaxial stress state.	K1	
	CLO3 : Solve problems involving stress and strains of deformable bodies; torsion problems; unsymmetrical bending; shear deformations in beams; curved beams and beams on elastic foundations.	S1	
	CLO4 : Idealize and solve problems involving torsion of noncircular shafts; unsymmetrical bending and shear deformations of beams; curved beams and beams on elastic foundation.	S1	
	CLO5: Use the appropriate analytical or numerical techniques, e.g. MATLAB to solve assigned problems	S1	
	CLO6: Select the appropriate failure criterion to evaluate design stresses of structural member.	C2	

Student Outcomes related to this Course	 K1. Recognize advanced engineering knowledge, concepts and techniques to identify, interpret and analyze complex and real-life engineering problems. S1. Provide solution for complex and real-life engineering problems through critical thinking and using modern engineering tools and identify its impact on social and ethical issues. C2. Design novel advanced Civil Engineering systems and evaluate its performance and effectiveness for engineering practice and its impact on society. 		
Topics Covered	List of Topics	Related CLOs	
	1. Basic equations of elasticity	CLO1	
	2. Analysis of stresses	CLO2	
	3. Torsion of non-circular shafts	CLO4	
	4. Torsion of thin-walled open and hollow sections	CLO4	
	5. Unsymmetrical bending and shear center	CLO4	
	6. Shear deformations in beams	CLO3	
	7. Bending of curved beams	CLO3	
	8. Failure theories	CLO6	
	9. Beams on elastic foundations	CLO4	
	10. Solution of problems using analytical and numerical techniques	CLO5	
Textbook(s) and Other Required Material	 A.P. Boresi, R.J. Schmidt, Advanced Mechanics of Materials, & Sons, Inc., 6th Edition, 2003. 	John Wiley	
Grading System	Assignments and Homework 10%		
	Presentation of Project 10%		
	Two Midterm Exams40%Final Exam40%		
Instructors	Prof. Husain Abbas; Office: 1A65; Email: <u>habbas@ksu.edu.sa</u>		
Date of Review	February, 2021		